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Abstract

The aim of the present work was to propose a model for the estimation of the endoparasitic load using
morphological descriptors easily accessible without killing the animal i.e. non-destructive method. The study was
conducted using plerocercoid forms of Ligula intestinalis in its second intermediate host, the roach (Rutilus rutilus).
The Kohonen Self-Organizing Map (non-supervised neural network) made it possible to present the complex data
matrix in a two-dimensional space, with individual clusters visualised by the U-matrix method. The six main
descriptors were selected and used to build the predictive model, four lateral and two thickness measures. The
generalisation ability of the backpropagation algorithm (supervised neural network) is confirmed by a determination
coefficient higher than 0.90 between observed and predicted values. The study for the first partial derivatives of the
parasitic load with respect to the six morphological variables is used to identify the factors influencing the parasitic
load and the mode of action of each factor. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A wide range of protozoan and metazoan para-
sites with complex life cycles are able to alter host
phenotype in a way that favours the continuation
of their life cycle (Combes, 1991; Poulin, 1998).
For example, many trophically transmitted para-
sites increase the vulnerability of the intermediate

host to the predatory definitive hosts (Holmes and
Bethel, 1972; Helluy, 1984; Moore, 1984; Hechtel
et al., 1993). The extent to which the behaviour of
the host is modified is often dependent on the
level of infection. However, for fish infected with
endoparasites, accurate information regarding the
level of infection is obtainable only following
dissection. Because ecologists are under pressure
to use methods that reduce the suffering caused to
animals, non-destructive approaches to the esti-
mation of the parasite load have an ethical, as
well as a scientific value.
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Ligula intestinalis (L.) is a widespread and
common pseudophyllidean cestode whose com-
plex life cycle is completed in three distinct hosts.
The first intermediate host, a copepod, is in-
gested by a cyprinid fish inside which Ligula
larvae evolve into plerocercoid stages located in
the abdominal cavity of the second host. The
final host is a fish-eating bird in which Ligula
reaches its maturity and reproduces in the host’s
intestine. Parasite eggs are released into the wa-
ter with bird faeces. From a pathogenic point of
view the second host is most important because
plerocercoids occupy the body cavity of the fish
for several years and produce harmful effects on
the fish (Van Dobben, 1952; Dence, 1958; Orr,
1966; Wilson, 1971; Holmes and Bethel, 1972;
Harris and Wheeler, 1974; Sweeting, 1976).

The roach (Rutilus rutilus L.) acquire the para-
sites following consumption of infected cope-
pods, and they grow rapidly to a large size in the
fish’s body cavity, characteristically distending
the abdominal region and having significant ef-
fects on many aspects of the physiology and be-
haviour of the host fish. The intensity of the
abdominal distension and fish morphology
changes depend on the total mass of parasite
tissue present.

The present study proposes the use of a non-
invasive morphometric technique to predict the
mass of L. intestinalis tissue in the roach body
cavity. The technique aims to separate groups of
fish at different levels of infection according to
morphometric characters and focus on the use of
advanced modelling technique, based on artificial
neural networks (i) to select the relevant vari-
ables explaining the parasite load, and (ii) to use
these variables to build the predictive model to
predict and explain the parasite load.

2. Methods

2.1. Sampling

Samples of Rutilus rutilus were collected from
the Lavernose-lacasse gravel pit located near
Toulouse in south–west France. Fish were col-
lected with a drag seine 30 m long and 10 mm

mesh size during December 1999 and January
2000. A total of 90 individuals were sampled and
deep-frozen as soon as possible in the laboratory.

2.2. Morphometry

For a sample of 45 infected and 45 uninfected
fish, 39 morphological measurements usually
used in fish morphological study were taken
(Hubbs and Lagler, 1967) (Table 1). A standard
protocol for processing each specimen was estab-
lished. All measurements were made by a single
individual (GL) to eliminate differences as a re-
sult of technique. All morphometric characters
were measured using a digital electronic calliper
to the nearest 0.01 mm. Each fish was dissected
to determine the parasite load. Plerocercoid lar-
vae present in the abdominal cavity were
weighed to the nearest 0.001 g. Since morpholog-
ical characters strongly depend on size, we de-
cided to correct all parameters for the individual
body size of the host.

2.3. Statistical analysis

The data processing was realised using a mod-
elling method based on the principle of neural
networks. We used, firstly the Kohonen Self-Or-
ganizing Map (SOM) algorithm (Kohonen, 1995)
to map the complex database on the two-dimen-
sional plane visualising the parasitic load, and to
determine the relevant variables contributing to
the model. Secondly, the backpropagation al-
gorithm (Rumelhart et al., 1986) was used to
establish the predictive model of the parasitic
load and to study the sensitivity of the variables
in the model.

The Kohonen neural network includes an in-
put layer connected to the 39 morphological
measurements of each fish, and an output layer
formed by 100 nodes on a hexagonal lattice.

Each neuron of the output layer stores a vir-
tual fish with morphological measurements to be
computed. During the training, the virtual fish
are modified in order to approximate the proba-
bility density function of the input data. The
main characteristic of the SOM classification is
the conservation of the topology: close fish (in a
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morphological measurement sense) are associated
with the same node or to nearby nodes on the
map.

The SOM algorithm is an unsupervised learning
procedure which can be summarised as follows:
� The virtual fish are initialised with random

samples drawn from the input data set.
� The virtual fish are updated in an iterative way:

– A sample unit is randomly chosen as an
input unit.

– The Euclidean distance between this sample
unit and every virtual fish is computed.

– The virtual fish closest to the input is se-
lected and called ‘best matching unit’
(BMU).

– The morphological measurements of the
BMU and its neighbours are changed in
order that these virtual fish moved a bit
towards the input unit.

The training was broken down into two parts
previously defined by Giraudel and Lek (2001):
� Ordering phase (the 2000 first steps): when this

first phase takes place, the fish are highly
modified in a wide neighbourhood of the
BMU.

� Tuning phase (50 000 steps: 500 times the num-
ber of neurons in the Kohonen map): during
this phase, only the virtual fish adjacent to the
BMU are lightly modified.
At the end of training, the morphological mea-

surements are known for each virtual fish, the
BMU is determined for each fish, and each real
fish is set in the corresponding hexagon of the
Kohonen map. Fish which are neighbours on the
grid are expected to represent neighbouring clus-
ters of fish; consequently, fish having a large
distance to each other, (according to morphologi-
cal measurements), are expected to be distant in
the feature space.

In order to detect a clustering structure in the
resulting SOM, a new map was built using the
U-Matrix method (Ultsch and Siemon, 1990;
Giraudel and Lek, in press). When the learning
process has been completed, the 39 morphological
measurements for each virtual fish were used to
compute the Euclidean distance between each
node located in two adjacent hexagons of the
SOM. High value distances gave an indication of
cluster boundaries. Inserting a new hexagon be-
tween each adjacent hexagon, the distances were

Table 1
List of 39 phenotypic morphological lateral traits and their
corresponding codes

CodeMorphological measurements

poOPostorbital distance
Preorbital distance prO

lcLength of head
Upper jaw length lmx
Head depth (at centre of eye) hco
Minimum body depth (least depth of caudal h

peduncle)
Distance between dorsal fin base and caudal DC

measuring point
Distance between dorsal fin base and pectoral fin DP

base
DVDistance between dorsal fin base and ventral fin

base
DADistance between dorsal fin base and anal fin base
OhHorizontal diameter of eye
O�Vertical diameter of eye

Predorsal distance pD
Prepectoral distance pP

pVPreventral distance
pAPreanal distance

Distance between pectoral fin base and ventral fin PV
base

Distance between pectoral fin base and anal fin PA
base

Distance between pectoral fin base and caudal PC
measurement point

Distance between ventral fin base and caudal VC
measurement point

Distance between anal fin base and caudal AC
measurement point

Depth of dorsal fin hD
Depth of anal fin hA
Length of pectoral fin lP
Length of ventral fin lV
Length of upper lobe of caudal fin lC1
Length of middle part of caudal fin lC2
Length of lower lobe of caudal fin lC3
Length of dorsal fin base lD
Length of anal fin base lA
Interorbital distance io

laPBody width at the level of pectoral fin insertion
Body width at the level of ventral fin insertion laV

laABody width at the level of anal fin insertion
Body width at the level of dorsal fin insertion laD
Maximum body width la
Body height at the level of posterior point of head HH
Body height at the level of ventral fin insertion HV

HABody height at the level of anal fin insertion
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visualised in each new hexagon as a grey-level
display. But distance values are only available for
the new hexagons, so in each hexagon including a
virtual fish, a distance has been added, computed
as the minimum of its adjacent hexagons and
visualised as a grey-level display. Dark colours
were used for large distances and light colours for
short distances, then, a triangle-based cubic inter-
polation (Watson, 1992) had been applied to the
U-matrix and a landscape was formed with light
plains separated by dark ravines. When the fish
are mapped on the U-matrix, the individuals in
the plains are close to each other so they are
similar (for morphological measurements).

Then to highlight the contribution of each mor-
phological measurement in the cluster structures,
39 U-matrices were coloured using the Euclidean
distance based on each morphological measure-
ment (Kaski et al., 1998). The obtained clusters
were compared with those previously obtained
using all the morphological measurements. The
more similar the patterns, the more relevant the
morphological measurements are. By this way, 6
measurements were selected and used for the pre-
dictive modelling.

For the predictive modelling, a multilayer feed-
forward neural network (MLP) was used. The
processing elements in the network, called neu-
rons, are arranged in a layered structure. The first
layer, called the input layer, connects with the
input variables. In our case, it comprises six neu-
rons corresponding to the six selected morpholog-
ical variables. The last layer, called the output
layer, connects to the output variable. It com-
prises a single neuron corresponding to the value
of the dependent variable to be predicted (para-
sitic load). The layers between the input and
output layers are called the hidden layers. There
can be one or more hidden layers and the number
of neurons of each layer is an important parame-
ter of the network. The network configuration
was approached empirically by testing various
possibilities and selecting the one that provides
the best compromise between bias and variance
(Geman et al., 1992). Each neuron was connected
to all neurons of adjacent layers. Neurons re-
ceived and sent signals through these connections.
Signals were transmitted only in one direction:

from input layer to output layer through hidden
layers. Connections were given a weight which
modulate the intensity of the signal they transmit.
To testify the predictive quality of the ANN
model, we used the ‘leave-one-out’ cross-valida-
tion procedure (Efron, 1983; Kohavi, 1995) which
is adapted in our study where the database is
small and each observation was tested using a
model trained by all other remaining observa-
tions. In fact, we performed 90 training phases
with 89 observations followed by 90 testing
phases with only one observation each time. The
quality of the model was judged through the
determination coefficient between measured and
predicted values.

One disadvantage of backpropagation al-
gorithm is its lack of explanation power. Classical
analyses, such as multiple linear regression
(MLR), can identify the contribution each indi-
vidual input make on the output and can also give
some measures of confidence about the estimated
coefficients. In mathematical terms, each coeffi-
cient of a linear model is the partial derivative of
the response of the model with respect to the
variable of that coefficient. The MLR partial co-
efficients therefore generally give an indication of
input variable reality, although it is not possible
for this type of model to represent a non-linear
relationship such as that which probably exists
between parasitic load and some influencing mor-
phological factors. On the other hand, currently,
there is no theoretical or practical way of accu-
rately interpreting the weights attributed in ANN.
For example, weights cannot be interpreted as a
regression coefficient nor difficulty used to com-
pute causal impacts or elasticity. But in ecology, it
is necessary to know the impact of the explana-
tory variables. Some authors have proposed meth-
ods allowing the determination of the impact of
the input variables (Garson, 1991; Goh, 1995; Lek
et al., 1996a,b; Dimopoulos et al., 1995, 1999).

In this study we use a simple method based on
the use of the partial derivatives of the network
response with respect to each descriptor. The link
between the modification of inputs, xj, and the
variation of outputs, yj= f(xj), is the Jacobian
matrix dy/dxt= [�y/�x ]m×n. It represents the sen-
sitivity of the network outputs according to small
input perturbations. For a network with n inputs,
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Fig. 1. (a) The output layer-grid of the SOM model with all
the parasitic load values, (b) U-matrix showing plains (light
grey) separated by several ravines (dark grey).

The sensitivity of the ANN output for the data
set with respect to input xe is:

SSDe= �
N

j=1

(dje)2 (2)

and the derivative can be efficiently computed as a
minor extension to the backpropagation al-
gorithm used for training.

All computational programmes were realised in
a Matlab® environment and computed with an
Intel Pentium® processor.

3. Results

3.1. Self-organizing map

After the training of the SOM using the 39
measured morphological characters, the parasitic
load value was displayed on the map for each fish
(Fig. 1a). Even though the SOM was built with-
out the parasitic load having been taken into
account, a gradient had been observed on the
map. The uncontaminated fish were localised in
the left part of the map, the contaminated fish
were observed in the right part of the map: the
most contaminated in the lower part, the least
contaminated in the upper and only three contam-
inated fish with low parasitic load were observed
among the uncontaminated ones. On the U-ma-
trix (Fig. 1b), the observation of the dark ravines
in dark shades strengthens the ability of the SOM
to reveal a structure in the fish population. The
map was divided by ravines in the three clusters
mentioned above: the uncontaminated fish area,
the less contaminated and the most contaminated.
It is worth noting that the parasitic load values
had been plotted, a posteriori, on the U-matrix
and had not been used in the construction of the
U-matrix.

In order to make explicit the contribution of
each morphological measurement in the organisa-
tion of the SOM, a U-matrix was coloured for
each morphological measurement. Each U-matrix
has been observed and those with ravines relevant
to the discrimination between uncontamination,
low contamination and high contamination (Fig.
2a– f) were selected as contributing to the determi-

one hidden layer with ni nodes, and one output
(i.e. m=1), the gradient vector of yj with respect
to xj is dj= [dj1,…, dje,…, djn ]T (Dimopoulos et al.,
1995, 1999), with:

dje= �
ni

i=1

wisIij(1−Iij)wei, (1)

(under the assumption that a logistic sigmoid
function is used for the activation). When sj is the
derivative of the output node with respect to its
input, Iij is the output of the ith hidden node for
the input xj, the scalars wis and wei are the weights
between the output node and the ith hidden node,
and between the eth input node and the ith
hidden node).
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nation of the clusters. In that way, six relevant
variables were determined and used for the pre-
diction of the parasitic load. More precisely,

(HH) the body height at the level of the posterior
point of the head and (DV) the distance between
the dorsal fin base and the ventral fin base, are

Fig. 2. Contribution of the six relevant variables in the local cluster structures. (a) HH, the body height at the level of the extreme
anterior point of the head; (b) DV, the distance between the dorsal fin base and ventral fin base; (c) HA, the body height at the level
of the anal fin insertion; (d) LaA, the body width at the level of the anal fin insertion; (e) LaP, the body width at the level of the
pectoral fin insertion; (f) PC, the distance between the pectoral fin base and the caudal measurement point; (g) the location of the
6 measurements in the lateral and ventral views.
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Fig. 3. Predictive quality of the multilayer perception neural
network models, using the leave-one-out cross-validation pro-
cedure: the relationship between the observed and the esti-
mated values of the parasitic load.

3.3. Influence of factors

The sensitivity study of the MLP model, accord-
ing to the partial derivative, led to the layout of
Fig. 4. The relative contribution allows the classifi-
cation of the morphological variables according to
their decreasing influence on the parasitic load:
(LaP ; 41.49%), (PC ; 18.62%), (DV ; 13.88%), (HA ;
10.91%), (LaA ; 10.85%), (HH ; 4.25%).

The study of partial derivatives for each mor-
phological variable (Fig. 4) leads to the following
remarks:
– The influence of HH on the parasitic load is

rather complicated and non-linear (Fig. 4a).
The positive values of partial derivatives (dHH,
in y axis) for the high values of HH (x axis)
show that the increase of the HH contributes
to the increasing of the parasitic load. More-
over, the very strong values of HH seem to
have negative values of dHH, confirming the
negative contribution to the parasitic load of
this parameter.

– The increase of DV supports the increase of
parasitic load (Fig. 4b). However, we can ob-
serve two tendencies: (i) for the values of
DV�0.28, the derivative is negative, (ii) for
the DV values over 0.28, we obtain the positive
values of the derivative, certifying that these
values of DV contribute to the increasing of the
parasitic load.

– The profile of the influence of HA on the
parasitic load (Fig. 4c) is in inverse order to the
two previous parameters. The derivative val-
ues, dHA, negative over all the range of the HA
value, testify to the negative contribution of
this variable to the parasitic load. One can
notice only few points with positive or nil
derivative values.

– The parasitic load decrease with the increasing
values (LaA), i.e. negative derivative values
(Fig. 4d), for the whole range of LaA. The
strong negative values of the derivative for high
values of LaA (�0.09) demonstrate the strong
negative impact of LaA on the parasitic load.

– The positive derivatives dLaP with LaP testify
that the parasitic load increases with LaP (Fig.
4e). Most of the points have the positive

relevant for the discrimination between infected
and uninfected fish, (HA) the body height at the
level of the anal fin insertion and (laA) the body
width at the level of the anal fin insertion, discrim-
inate the most heavily infected fish from the others
and the two variables: (laP) the body width at the
level of the pectoral fin insertion and (PC) the
distance between the pectoral fin base and the
caudal measurement point, are relevant for the
discrimination between all levels of fish infestation.

3.2. Prediction of parasitic load

With the six morphological variables selected
and using the ‘leave-one-out’ cross-validation ap-
proach, a good predictive model can be obtained
using a MLP with three neurons in the hidden
layer and sigmoid as the activation function. The
high value of the determination coefficient demon-
strates the great predictive power of the model
(R2=0.90). Most of the points in the whole range
of the parasitic load values were distributed along
a perfect predicted diagonal line (Fig. 3). Only a
few points were slightly isolated to the perfect fit
line, i.e. slightly under or over estimated by the
model. The residuals of the model were weak
(mean=0.07, S.D.=0.69), the study of the rela-
tionship between residuals and values estimated by
the model showed complete independence (r= −
0.03, P=0.79).
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derivatives, especially for the values of Lap
between 0.12 and 0.14.

– Fig. 4f shows the complicated and non-linear
impact (PC) on the parasitic load. It changes
according to the change of the PC-values.
Firstly, the derivative is nil for PC�0.78; sec-
ondly, the derivative is strongly positive for PC
between 0.78 and 0.8; and thirdly, the deriva-
tive is notably negative for PC�0.8.

4. Discussion

L. intestinalis plerocercoids have been shown by
many researchers to induce severe pathological
effects on fish (Van Dobben, 1952; Dence, 1958;
Dogiel et al., 1961; Wilson, 1971; Holmes and

Bethel, 1972; Harris and Wheeler, 1974; Sweeting,
1976; Taylor and Hoole, 1989). The roach (Ru-
tilus rutilus L.) acquire the parasites following
consumption of infected copepods, and they grow
rapidly over several months. During their devel-
opment, these parasites grow from a microscopic
procercoid to a large plerocercoid worm in the
fish body cavity characteristically distending the
abdominal region (represented by the variation of
HH, DV and laP). A displacement of the pectoral
fin which moves forward closer to the head is
associated with abdominal distension (represented
by the variation of PC). These morphological
changes occur for the two level of infestation
(parasite burden �5 g and �5 g). The morpho-
logical modifications of the host, e.g. body wall
distension and fin displacements, are the result of

Fig. 4. Partial derivatives of the multilayer perception neural network model response with respect to each descriptor. (a) HH, the
body height at the level of the extreme anterior point of the head; (b) DV, the distance between the dorsal fin base and the ventral
fin base; (c) HA, the body height at the level of the anal fin insertion; (d) LaA, the body width at the level of the anal fin insertion;
(e) LaP, the body width at the level of the pectoral fin insertion; (f) PC, the distance between the pectoral fin base and the caudal
measurement point.
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the accumulation of plerocercoids in the fish i.e.
mechanical side-effect. The larger infected roach
which possess parasite burdens that approached 5
g were suffering from a deformation at the level
of the tail (represented by the variation of HA
and laA). Deformations at the level of the tail are
not simply the response to abdomen distension
but they may be explained by direct physiological
effects of plerocercoids on the host. As pointed
out by many authors, physiological mechanisms
through which such phenotype modification can
be achieved have only recently started to be un-
derstood (Wedekind and Milinski, 1996). Gener-
ally, pseudophyllidean worms are known to divert
energy away and cause a considerable energy
drain from the non-vital organs of the fish (Kuris,
1997; Phares, 1996), for instance muscle atrophy
at the level of the host’s tail.

From this study, three kinds of results emerge:
(i) the artificial neural networks with the Kohonen
SOM are a good tool to display high-dimensional
data in a two-dimensional space. Moreover, with
the U-matrix method, the SOM allows cluster
analysis. As already mentioned by some authors
(e.g. Kaski et al., 1998) we demonstrate in this
study that it is possible to extract the relevant
variables in the cluster structures. (ii) The MLP
with a backpropagation algorithm allows us to
predict the parasitic load with very good predic-
tive quality, such as demonstrated by several au-
thors for several ecological areas (e.g. Scardi,
1996; Culverhouse et al., 1996; Recknagel, 1997;
Recknagel et al., 1997; Yabunaka et al., 1997; Lek
and Guégan, 2000). This method gave much
higher correlation coefficients than other meth-
ods, due to the ability of MLP to take directly
into account any non-linear relationships between
the input (morphological variables) and the out-
put (parasitic load) variables (Lek et al., 1996b).
These results are in agreement with literature
data, where performances of artificial neural net-
work have been repeatedly reported to exceed
those of more traditional methods (see complete
references in Lek and Guégan, 2000). (iii) The
MLP, was known as a ‘black-box model’. In this
work, we demonstrate that it could be used as
explanatory principle, i.e. to determine the contri-
bution of variables at the input to explain the

variations of the output. Many algorithms have
been put forward by several authors to determine
the impact of input variables on the output, using
ecological data (e.g. Garson, 1991; Goh, 1995;
Lek et al., 1996a,b; Maier and Dandy, 1996; Balls
et al., 1996; Seginer, 1997; Dimopoulos et al.,
1999). The profile and percentage contributions of
the input variables determined by the Lek and
Dimopoulos algorithms provide an explanation of
the impact of a set of input variables on parasitic
load modelling.

This technique is not biased by the gonad de-
velopment which increases the body size. The
gonad development is inhibited by the parasite
and among uninfested fish analysed, 35% had
matured females with a gonad weight of 1.448�
1.184 g. The intensity of fish morphology changes
depends on the total mass of parasite tissue
present which exerts significant effects on many
aspects of the biological features such as the
physiology, the behaviour and the ecology of the
host. The availability of this non-destructive mor-
phometric technique allows a pattern of experi-
ments that could lead to a greater understanding
of how L. intestinalis affects the biology, and
particularly the behaviour of the fish hosts, during
the course of the infection. The technique is most
accurate for studying parasite-induced alterations
on the host predator-prey within interactions, col-
oration, foraging and shoaling behaviour
(Combes, 1991; Thomas and Poulin, 1998; Poulin
et al., 1998). Such a study has a growing interest
not only in contributing to our knowledge of
freshwater ecosystems, but also to our under-
standing of ecological communities in general.
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